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Field redefinition rules for auxiliary field searches 

V 0 Rivellest and J G Taylor 
Department of Mathematics, King’s College, London WC2R 2LS, UK 

Received 10 March 1982, in final form 10 May 1982 

Abstract. We show how to redefine differentially constrained and unconstrained fields so 
that they become either auxiliary or propagating fields when the equations of motion are 
used. 

1. Introduction 

Massless off -shell N- extended supersymmetry and supergravity is expected to be 
satisfactorily analysed, at the linearised level, in terms of massive irreducible rep- 
resentations (irreps) of the appropriate supersymmetry algebra s,. These and their 
symmetries are now known (Taylor 1980, 1981b, 1982a, Pickup and Taylor 1981, 
Bufton and Taylor 1982b, Ferrara et a1 1980, Sokatchev 1982) for all physically 
interesting values of N, so that it is to be expected that this knowledge would have 
had immediate application in effortlessly constructing the corresponding off -shell 
linearised theories. That this has not happened is due to the SU(N) symmetry present 
in SN for N 2 3 (Rivelles and Taylor 1981, Taylor 1982b), but a contributing feature 
making the analysis difficult is that the component fields in irreps of SN are not the 
gauge-dependent physical fields whose on-shell restrictions describe only the physically 
desired helicity states. Crucial field recombinations have to be taken before the usual 
gauge fields of supersymmetry and more particularly of supergravity emerge. In the 
process, different irreps are mixed together in a decidedly non-trivial fashion. 

The purpose of this paper is to develop to the full such field redefinitions as 
presently appear of value, especially in constructing off -shell supergravities. Since 
these redefinition rules have already given auxiliary field candidates for linearised 
N 2 3 extended supergravities (Taylor 1981a) and new sets of auxiliary fields for 
N = 1 and 2 linearised supergravities (Rivelles and Taylor 1982b, c, d) the detailed 
tabulation and analysis of such rules would seem timely. 

Field redefinition rules appear first to have been used, somewhat implicitly, in a 
search for the auxiliary fields of N = 2 supergravity (de Wit and van Holten 1979). 
They were then made explicit and used (Rivelles and Taylor 1982a) in an analysis 
of the superfield structure of linearised N = 2 supergravity. Since their value is only 
apparent when the irrep structure of SN is known and these latter have only been 
recently obtained, their late appearance as a useful research tool in determining 
off -shell structure specifically in terms of auxiliary fields becomes understood. 

We wish’ to distinguish between two sorts of field redefinition rules for their 
application to supergravity. The first class we call annihilation rules and it allows two 
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or more otherwise propagating fields (sometimes with negative kinetic energy) to be 
combined together so that when the equations of motion are used, the resulting field 
vanishes or only its gauge modes survive. Such fields are usually called auxiliary fields. 
The other class of redefinition rules are called creation rules. It is these rules which 
combine fields of various spin together so that an appropriate unconstrained field is 
obtained which has a certain amount of gauge invariance in its Lagrangian. It is this 
latter which allows the combined field to describe a massless field of unique spin. The 
epithet 'creative' is thus appropriate here since the resulting field is usually regarded 
as the physical one, and has been created by field combinations from otherwise 
unphysical modes in the original irreps. The unphysical features of the latter arise 
either due to differential constraints or negative kinetic energy terms. 

In the next section we develop the annihilation rules for fermions and extend these 
to bosons in the following section. Fermionic creation rules are considered next and 
then we discuss boson creation rules. A final section summarises our results and 
discusses avenues for future work. 

2. Fermion annihilation rules 

The most elementary of all fermionic annihilation rules, and the basis of all other 
known ones, is that for Majorana spin-; particles. If we denote by *$ the signed 
kinetic energy term *I,$$, we have that 

&@+ - &q5 = (4 + $)@($ - 4 1 i I A 2, (2.1) 

to within a total divergence (which we neglect in the present analysis), where we have 
defined the Majorana spinors A l  and A Z  of (mass) dimensions 1 and as A I  = $ + 4, A z  = 
g ( $ - 4 ) .  Then (2.1) may be written as 

;+o (2.2) 

where =O denotes the vanishing of the combination of spin-; fields on the LHS by 
their combined equations of motion A I  = A z  = 0. The fermions A I  and A Z  are therefore 
auxiliary fields. 

We emphasise here that the interpretation of (2.2) is not in terms of the propagating 
fields on the LHS. The independent fields of the combination of the LHS of (2.2) are 
the spinors A I  and A z ,  in terms of which $ and q5 can be trivially, but non-locally, 
expressed as $ = i ( A l  +@-'Az), 4 =;(A1 -@-'Az) .  Thus there are no physical modes 
in terms of the underlying fields A 1  and A Z .  We would be mistaken in considering 
(2.2) to be composed of a physical and ghost spin-; pair of propagating particles; 
there is no physical content at all in (2.2) when considered in terms of the fields A I  
and A*. We note that the problems associated with the ghost in (2.2) can only be 
removed satisfactorily by regarding A I  and A z  as the fundamental fields. The search 
for auxiliary fields is that of finding such fields which do annihilate apparently propagat- 
ing combinations, as given by the LHS of (2.2). We should also remark here that 
though local field redefinitions cannot change dynamics, the non-local ones we are 
contemplating can do so, and indeed must do so in order to produce a physically 
reasonable result (in that ghosts are thereby removed). 

The next annihilation rule involves spins 4 and 4. By analogy with the RHS of (2.1) 
we expect it to arise from differentially unconstrained vector spinors At,, Az, in the 
form i Y A z , .  To obtain this term we start with the pure spin-: Majorana fields (CIF, 
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4,, for which pp$, = p”4, = y”$, = y N 4 ,  = 0. We remove both constraints on $, and 
4,, by writing the pure spin-$ field $, in terms of the unconstrained field A, as 

$, =+,,A” - ( 1 / 3 ) ~ ; ~ , , f j ’ ~ A ~ ,  (2.3) 

with 4,” = q,,, -pIIpy/p2, y: = y, -p,,g/p2. Equation (2.3) thus allows the decomposi- 
tion of a completely unconstrained vector spinor x, into the spin-; and -$ irreps of the 
Lorentz group as 

x, = $, +i(y, - 4 p d - ’ ~ + i ( y ,  -pJ/p2W. (2.4) 

Furthermore, f p p x ,  = $,p$,, + 6$#$ - 3(cI’p$’ - 6(cI’p$. We can diagonalise the last 
three terms by suitable linear combinations of $ and $’ since the eigenvalues of the 
quadratic form in $ and 4’ are $(l*JG). In terms of the diagonal modes $l and 
J12 we have 

P P * ,  = 2 V X ,  + i l P * l -  $$*2. 

iFp4, = 4 @Pv, + 41P41- &$42. 

(2.5) 

We perform the same decomposition for 4, as 

(2.6) 

The recombination (2.1) now gives 

q”p@,, -qTWpq5, =.hTAz, + h l A 2 + . h 3 A 4 ,  (2.7) 

whereA1, = x , + + , , A 2 ,  = ~ ( x , - ~ , ) , A l = J I 1 + 4 1 ,  A 2 = ~ ( $ 1 - 4 1 ) , h 3 = $ 2 + 4 2 , A 4 =  

;+0. (2.8) 
We may extend (2.2) and (2.8) to higher spin straightforwardly. For higher 

half-odd-integer spin j the above methods lead to the annihilation rules 

~ ( 4 ~ -  J12). Equation (2.7) gives the rule 

j - j = 0, (1 = half-odd-integer), (2.9) 

where the RHS of (2.9) is the appropriate generalisation of the RHS of (2.7). 
We may combine various spins together to give auxiliary fields of simpler form. 

Thus by taking the last two terms on the RHS to the LHS of (2.7), and using (2.1), we 
have 

(2.10) (3 + t’) - (2 + 3’) = 0, 

[ j + ( j - l ) ’ + .  . .+421--[j+(j-1)~+ . . +-$7=0 
where the RHS now denotes 11wA2, .  More generally (2.10) becomes 

(2.12) 

where the RHS denotes ~ ; L 1 ’ . ‘ ) 1 ~ - ~ A 2 , 1 . . . , , - ~ ,  We have used this version of the fermion 
annihilation rules elsewhere (Rivelles and Taylor 198 1, Taylor 1982b). 

The use of other unconstrained tensor spinors such as x,,, = -xu, only produces 
multiples of the rules (2.9), such as j 2  - j 2  = 0, but never rules involving an odd total 
number of fermions being annihilated. 

3. Boson annihilation rules 

One method of constructing boson annihilation rules is identical to that for fermions, 
i.e.: express a given spin field in terms of a differentially unconstrained tensor and 
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lower spin fields for which annihilation rules have already been obtained. Equivalently 
we may decompose a differentially unconstrained tensor into its given spin components 
and so obtain annihilation rules involving fields of different spin. It is in this latter 
form that we will obtain our rules, similarly to those of (2.12). Another method is 
to rewrite combinations of constrained fields in terms of gauge fields restricted by the 
equations of motion to pure gauge modes. 

Using the first method, the simplest boson rule is obtained from the unconstrained 
real vector A,, which we may decompose into its spin 0 and 1 components as 

A, = (8,“ -p,p”Ip2)AY +ip,4, 

-A”A, = -4p24 - B”B,, 

(3.1) 

(3.2) 

where 4 = -ip,/p’A”. Then to within a total divergence 

where B, = (q,, -p,pY/p2)Aw, so p&B, = 0. 
The second term on the RHS of (3.2) is the Lagrangian for a real vector field B, 

of dimension 2, and we denote it by la. The first term in (3.2) is the negative of the 
Lagrangian for the real scalar 4 of dimension 1; we denote this by -0,. Then (3.2) 
gives the annihilation rule 

1 A  - 0, 0 ,  (3.3) 

where the RHS of (3.3) is A,’, in terms of the auxiliary field A,. 

components. We use the decomposition 
For spin 2 we consider the symmetric traceless tensor S,, with 9 independent 

(3.4) 

in terms of the symmetric traceless tensor h,, with p’lh,, = 0 and the constrained 
vector V, with p”V, = 0. To within a total divergence 

S,, = h,, + ip(,Vv, + (2p,pv/p2 - 1/2v,,)S 

S,; = h,: + F,:( V) + S 2 ,  (3.5) 
the RHS being the sum of suitably signed spins 2, 1 and 0 respectively. We can 
therefore rewrite (3.5) as the annihilation rule 

2.4 - 1 p + 0 A  0.  (3.6) 

We can generalise (3.3) and (3.6) by taking the ( A ,  A )  representation of SO(3,l) 
and writing the annihilation rule 

qA-(q-l)p+(r / - - )A-s  ..“o, r/ = 2 A .  (3.7) 

Annihilation rules involving 1, (a vector of dimension 1) may be obtained from 
other unconstrained tensors. Thus the tensor A,, antisymmetric in p c* v may be 
decomposed as 

A,, = ip~,Aul+ie,vAupAvu, (3.8) 

(3.9) 

and again to within total divergences 

A,? = F,,~(A) -FA VI, 

where FWv( W )  = 8, W, -a,, W,. Equation (3.9) can be rewritten 

1, - 1, = 0. (3.10) 

This may be generalised to a second class of annihilation rules, obtained from the 
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irreps (A, p )  + (p, A )  of SO(3,l); the general case is 

[ ( A + ~ ) P , A + ( ~ + c L - ~ ) A , P + .  I .*(A-p)I  

- [ ( A + ~ ) P , A + ( ~ + ~ - ~ ) A . P + .  . . * ( A - p ) I = O  ( A > p )  (3.11) 

where we choose P for A odd or A for A even in the first bracket and it is alternated 
in the following ones. 

The second method of obtaining annihilation rules is most easily seen by considering 
two physical scalars A I  and Az:  

Alp2A1 -Azp2Az = B1B2, (3.12) 

where B1= A1 + A ,  and B2 =p2(A1 - A z )  with dimensions 1 and 3 respectively. We 
can then write (3.12) as the annihilation rule 

(3.13) 

Such new types of auxiliary fields have already appeared in the new versions of N = 1 
and N = 2 supergravity (Rivelles and Taylor 1982b, c, d). For spin 1 we have the 
annihilation rule 

1 A - l A z O  (3.14) 

which has been used to construct the new minimal version of N = 1 supergravity 
(Sohnius and West 1981). TILS rule follows from 

0, - 0, = 0. 

A ~ ,  -B', = u,EwYAua,wAS 
SU, = a, A, sw,, =a[,~,] 

(3.15) 

where U, = A ,  -B,, W,, = (1/2p2)~,uAuaA(Au+Bu) and p,A, = p p B ,  =O.  The 
resulting field equations give W,, and U, as purely gauge modes. We can also take 
P instead of A in (3.14) by the same method. 

We may generalise (3.13) and (3.14) to higher spin, as 

j - j - 0  (3.16) 

where either P or A can be used to label j in (3.16). 

4. Fermionic and bosonic creation rules 

As we have already remarked, creation rules are those which allow the combination 
of differentially constrained fields of given spin to be taken to produce a propagating 
field without ghosts but with suitable gauge invariance to lead on-shell to a massless 
field of given helicity. Due to the difficulties associated with the coupling of higher 
spin fields we will only consider the case with spin ? and 2. 

The appropriate gauge-invariant Lagrangian for a spin-; massless Majorana field 
CL, is that of Rarita and Schwinger 

which is invariant under 84, = 8,s. The field 4, has 12 degrees of freedom when the 
gauge invariance is taken into account, so that 4 further degrees of freedom are needed 
to combine with the 8 degrees of freedom of a pure spin-$ field 4,. We expect these 
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extra degrees of freedom to be given by a spin-$ field, and thus that 

$-+= LRS. (4.2) 

This creation rule can be proved by using the expression for a pure spin-3 field 4, 
in terms of an unconstrained vector spinor 4, as (see (2.3)) 

(4.3) 4 =,ij 4 u - L  A U -  , ,U 3,ijeAY Y 7 7 u w * y .  

We may then evaluate the Lagrangian for 4, in terms of $,, and obtain 

$”’@$, = - ~ e r ” p u ~ ~ ~ s ~ v ~ p 4 ~  +$@A, 14.4, 

where A = y”+, -@p”/p2$, .  On taking the second term on the RHS of 14.4) to the 
LHS and using (4.1) we obtain (4.2). This is the explicitly Lorentz covariant generalisa- 
tion of an earlier decomposition (Deser et a1 1977). 

For the bosonic case we use that the differentially constrained symmetric and 
traceless spin-2 field h,, can be expressed in terms of the unconstrained symmetric 
field f,,, as 

h,, = f/,pfyufpu -S,ij,yf/pufpu. (4.5) 

Then the Lagrangian h”“p’h,” can be rewritten in terms of f,,, as 

hc””p2h,, = 2LE(f)+$bp2b (4.6) 

where LE( f) is the linearised Einstein Lagrangian 
&I 2 I’ LE(f) =:fw”p2f,” -f””p,p”f,” +f,wPFP=f,p -if, p f” 9 

2, - 0, =LE, (4.7) 

and b = f w w  -pILpy /p2f , , ,  being the dilation mode. We may thus write (4.6) as 

being the appropriate creation rule for spin 2. This is the explicitly Lorentz covariant 
generalisation of the canonical decomposition in Arnowitt et a1 (1962). 

5. Summary and discussion 

We have obtained the rules which have helped the search for auxiliary fields in 
supergravity. These rules are of two sorts: annihilation and creation rules. The former 
allow field recombinations to be made which cause unwanted fields to become gauge 
modes or to vanish on-shell. They therefore provide the auxiliary fields directly. The 
other rules provide the determination of lower spin companions to spin-? or -2 fields 
so that the latter are described by differentially unconstrained fields with an associated 
gauge invariance. These latter fields appear as the physically appropriate way to 
describe massless fields off -shell. In particular the lack of differential constraints on 
the fields allows for their satisfactory quantisation. 

There are many further steps to be taken after this to lead to a fully nonlinear 
off-shell theory of N = 8  supergravity. But even the use of the creation rules (4.2) 
and (4.7) alone indicates that more than one supersymmetric multiplet must be used, 
since all the component fields in a single multiplet will have the same sign of kinetic 
energy in a linearised Lagrangian. 

One feature which requires further study is that of putting the rules on a nonlinear 
footing. Especially we need to determine in what way they are modified by the 
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presence of an arbitrary curved background space-time. For example, terms dropped 
as total derivatives on integration by parts may now become important in topological 
non-trivial space-times and would change the rules. 

Acknowledgment 

One of us (VOR) would like to thank CAPES for financial support while this work 
was being completed. 

References 

Arnowitt R, Deser S and Misner C W 1962 Gravitation: an Introduction to Current Research ed L Witten 

Bufton G and Taylor J G 1982 Representations of Global Supersymmetries for all N,  Kings College preprint 
Deser S, Kay J H and Stelle K S 1977 Phys. Rev. 16 2448 
Ferrara S, Savoy C A and Zumino B 1980 Phys. Lett. lOOB 393 
Pickup C and Taylor J G 1981 Nucl. Phys. B 188 577 
Rivelles V 0 and Taylor J G 1981 Phys. Lett. 104B 131 
- 1982a I.  Phys. A :  Math. Gen. 15 163 
- 1982b Phys. Lett. B to appear 
- 1982c All Possible Sets of Lower Spin Auxiliary Fields for N = 1 Supergravity, Kings College preprint 

- 1982d All Other Minimal Sets of Auxiliary Fields for N = 2 Supergravity, Kings College preprint (May) 
Sohnius M F and West P C 1981 Phys. Lett. lO5B 359 
Sokatchev E 1982 Supergravity '81 ed S Ferrara and J G Taylor (Cambridge: Cambridge University Press) 
Taylor J G 1980 Nucl. Phys. B 169 484 
- 1981a Phys. Lett. lO5B 429,434 
- 1981b Extended Superfields in Linearised Supersymmetry and Supergravity ed S Hawking and M 

- 1982a Supergravity '81 ed S Ferrara and J G Taylor (Cambridge: Cambridge University Press) 
- 1982b I. Phys. A: Math. Gen. 15 867 
de Wit B and van Holten J W 1979 Nucl. Phys. B 155 530 

(New York: Wiley) p 227 

(February) 

Rocek (Cambridge: Cambridge University Press) 


